
Journal of The Electrochemical Society, 161 (6) A981-A988 (2014) A981
0013-4651/2014/161(6)/A981/8/$31.00 © The Electrochemical Society
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We present an in situ electrochemical technique for the quantitative measurement and resolution of the ohmic, charge transfer and
diffusion overvoltages at the negative electrode of an all-vanadium redox flow battery (VRFB) using electrochemical impedance
spectroscopy (EIS). The mathematics describing the complex impedance of the V+2/V+3 redox reaction is derived and matches
the experimental data. The voltage losses contributed by each process have been resolved and quantified at various flow rates and
electrode thicknesses as a function of current density during anodic and cathodic polarization. The diffusion overvoltage was affected
strongly by flow rate while the charge transfer and ohmic losses were invariant. On the other hand, adopting a thicker electrode
significantly changed both the charge transfer and diffusion losses due to increased surface area. Furthermore, the Tafel plot obtained
from the impedance resolved charge transfer overvoltage yielded the geometric exchange current density, anodic and cathodic Tafel
slopes (135 ± 5 and 121 ± 5 mV/decade respectively) and corresponding transfer coefficients α = 0.45 ± 0.02 and β = 0.50 ± 0.02
in an operating cell.
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Consumption of fossil energy can be reduced by enhancing the
utilization of renewable energy sources. However, the intermittent
and often unpredictable nature of renewable energy, such as wind and
solar, pose a challenge to widespread implementation.1 To effectively
integrate the energy from more diverse resources to the modern grid,
large-scale energy storage systems are required as mediators through
load leveling and peak shaving.2 Redox flow batteries (RFBs) are an
energy storage system that meets many of the requirements for this
application.3,4

Unlike conventional batteries, RFBs are able to decouple power
and energy capacities. During RFB operation, the negative and pos-
itive reactants are circulated to the battery stack for electrochemical
reaction from separated reservoirs. In a RFB, the available power is
determined by the characteristics of the battery stack while energy
is controlled by the electrolyte properties and the size of electrolyte
reservoirs. Nevertheless, to be economically viable, a critical factor is
RFB capital cost.

Among RFBs, the vanadium redox flow battery (VRFB)5–9 has at-
tracted the most attention in recent years.10–17 The installed cost of the
VRFB is strongly associated with the energy density (electrolyte con-
centration) and the power density (stack performance) of the system.18

Kazacos et al.19 and, more recently, researchers at Pacific Northwest
National Laboratory (PNNL)20 have reported advanced electrolytes
with higher energy density. On the other hand, the stack performance
was substantially enhanced by the research group at the University of
Tennessee-Knoxville (UTK) using a “zero-gap” cell design.21,22 These
critical achievements have made the VRFB a promising technology
for grid-scale energy storage application.

To further improve battery performance, one must identify and
quantify the rate-limiting processes that control the losses in the cell.
In previous work, we demonstrated that the voltage losses originating
from charge transfer and ohmic processes at various discharge cur-
rents can be quantified using electrochemical impedance spectroscopy
(EIS); and these losses were dominant at the negative electrode.23

However, we were not able to quantify diffusion overvoltage at that
time.
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In this work, we again apply EIS to probe the voltage losses at the
VRFB negative electrode. We present a complex impedance protocol
which allows quantitative measurement and resolution of the overvolt-
ages resulting from ohmic, charge transfer and diffusion processes at
various operating current densities during charge and discharge. We
demonstrate this protocol by measuring these overvoltages as a func-
tion of flow rate and electrode thickness. The results clearly identify
and quantify the rate limiting processes at various charge/discharge
currents and cell configurations leading to a pathway for performance
optimization.

Experimental

Electrolyte system.— Vanadium electrolyte solutions containing
0.8M total vanadium ions and 4M sulfuric acid were prepared using
a protocol described previously.23 In particular, the negative half-cell
(V2+/V3+) was the focus of this work and was tuned close to 50%
state of charge (SoC) with a volume of 400 mL. The flow rate was
maintained by either a gravity siphon (1.5 mL/min) or a peristaltic
pump (8 mL/min and 40 mL/min).

Cell.— A 5 cm2 single cell (Fuel Cell Technologies) with PTFE-
coated fiberglass cell gaskets was adopted in this work. Carbon paper
(SGL 10AA, 400 microns thick, <12 m�-cm) was used as the elec-
trode material for both sides of the cell. The thickness of the gasket
was chosen to achieve 25% compression of the electrodes upon cell
closure. Two pieces of Nafion 117 (Ion Power) were used as the sep-
arator. A dynamic hydrogen electrode24,25 and a Hg/HgSO4 electrode
were used as reference electrodes in this work. In the latter case, the
tip of the Hg/HgSO4 electrode was placed on the Nafion membrane
at the perimeter of the cell and the junction point was wetted with
0.5 M H2SO4.

Impedance measurement.— Electrochemical impedance spec-
troscopy (EIS) was performed in a symmetric cell. The negative elec-
trolyte was purged with ultra-high-purity nitrogen gas and circulated
to both sides of the cell from a single reservoir. We set the initial
[V+2]/[V+3] ratio to correspond to a SoC of 50%. With this configura-
tion, a change in the [V+2]/[V+3] ratio at the working electrode during
charge/discharge was precisely compensated by an opposite change
in the ratio at the counter electrode.26 This cell configuration also

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 160.36.178.25Downloaded on 2015-11-30 to IP 

http://dx.doi.org/10.1149/2.045406jes
mailto:chenan.sun@gmail.com
mailto:tzawodzi@utk.edu
http://ecsdl.org/site/terms_use


A982 Journal of The Electrochemical Society, 161 (6) A981-A988 (2014)

eliminated self-discharge caused by oxygen oxidation of the V+2 and
by vanadium ion crossover through the membrane. This cell does not,
however, eliminate concentration variations caused by self discharge
(V+2 oxidation) against the H+ reduction reaction within the cell
stack.27 This side reaction is particularly important when conducting
long term complex impedance measurements to very low frequencies.
Under these circumstances the [V+2]/[V+3] ratio can be reduced by
almost 2 orders of magnitude. When this happened the [V+2]/[V+3]
ratio was estimated using the Nernst equation at the open circuit po-
tential measured with respect to the reference electrode. Charge and
discharge of the V+2/V+3 anode were performed potentiostatically by
polarizing the working electrode with respect to the reference elec-
trode potential. The impedance of the working electrode was measured
using a 5 mV sinusoidal perturbation superimposed onto the DC po-
larization potential, as described previously.23 The cell, the pump and
the electrolyte reservoir were maintained in a temperature chamber
(Yamato) at 30◦C.

Results and Discussion

Mathematical model.— We previously investigated the voltage
loss of a VRFB using the EIS technique combined with a reference
electrode and observed that the total overvoltage within the cell was
dominated by the negative electrode.23 In this report we examine in
greater detail the individual rate-limiting processes which contribute
to this total overvoltage at the anode. In order to describe the com-
plex impedance of the V+2/V+3 redox reaction, we use the theory of
electrochemical impedance of macrohomogeneous porous electrodes
derived by Paasch, Micka and Gersdorf28 and expressed in general
form by equations 1 and 2.
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The symbols used throughout this report are defined in
Appendix I.

In equation 1, Zp is the complex impedance of the porous elec-
trode. In equation 2, Za is the complex impedance of a differential
unit element of surface area within the electrode. Za represents the
impedance of the charge transfer reaction, Z ′

a , connected in parallel
with the double layer capacitance (shown as a constant phase element)
in equation 3.

1

Za
= 1

Z ′
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+ ( jω)P Cdl [3]

The general form of the charge transfer impedance, Z ′
a , can be de-

rived from the Butler-Volmer equation for the specific charge transfer
reaction. For the VRFB, the charge transfer reaction at the negative
electrode is given by equation 4.

V +3 + e−〈=〉V +2 [4]

The corresponding Butler-Volmer relation is shown in equation 5.
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And the resulting charge transfer impedance, Z ′
a , is shown in equa-

tion 6.
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In equations 6 – 9 the subscript, s, refers to the Laplace transform
variable s = σ + jω. And is , ηs, [V+2]os and [V+3]os are the Laplace
transforms of the current, overvoltage and surface concentrations re-
spectively.

The steady-state area specific impedance, Z′
a, is obtained after the

derivatives
d[V +2]os

dis
and

d[V +3]os
dis

are evaluated from the appropriate
Laplace transformed diffusion equations (see discussion below), and
the neperian frequency, σ is suppressed (σ→0) so that s→jω.

The Paasch model does not assign any specific geometry to the
electrode pore structure or surface area elements within the pore struc-
ture. Instead, the influence of geometric shape and form are included
at a microscopic scale in the definition of Z ′

a . Specifically, the solution
of Fick’s first and second laws of diffusion, which is required for eval-

uation of the derivatives
d[V +2]os

dis
and

d[V +3]os
dis

, is typically conducted
in a geometric framework which establishes the boundary conditions
for the mathematical solution. At this time, however, we will continue
to ignore geometric shape and form and only utilize one-dimensional
solutions to the diffusion equations. Later, we will address geometric
shape and form as a correction to the one-dimensional solutions.

When the porous negative electrode of a vanadium redox flow bat-
tery is discharged without flowing electrolyte, the [V+2] concentration
in the pore structure is quickly depleted and the discharge is limited
by diffusion to the back surface of the electrode at the flow channels.
When electrolyte is flowing, however, a Nernstian diffusion layer is
established at the back surface and within the pore structure of the elec-
trode. The thickness of the Nernstian diffusion layer, a, is governed
by the hydrodynamics of the electrolyte flow; and the concentrations
of the oxidized and reduced species are maintained constant at the
boundary of the Nernstian diffusion layer. Jacobsen and West29 de-
rived the one-dimensional Laplace transformed diffusion equation for
a uniform Nernstian finite diffusion layer from which we computed
the concentration derivatives required in equation 6:
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Substitution of equations 10 and 11 into equation 6 yields
equation 12 when s→ jω.
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Equation 12 describes the impedance of the charge transfer reaction
at each differential unit element of surface area within the porous
electrode when the finite diffusion layer is constant throughout the
electrode. This is clearly not the case when electrolyte is flowing
across the back surface of the electrode. Electrolyte shear varies with
electrode depth and pore size. We therefore expect a distribution in the
Nernstian diffusion layer thickness, a. Nevertheless, commensurate
with our use of the one-dimensional model, we consider the parameter,
a, in equation 12 as an “average” diffusion layer thickness.

We also expect that a significant fraction of the internal surface
resides in pores which support little or no electrolyte flow, and for
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which the pore size is much smaller than the Nernstian diffusion
layer. For these surface area elements equations 12 does not apply.

Instead, finite diffusion is limited by the size of the pores
(p = pore size) and the analogous charge transfer impedance at these
unit differential elements of surface area is given by equation 13.
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We recognize that the pore size is neither constant nor uniform
within the electrode. The parameter, p, depends on pore geometry and
is also distributed. Nevertheless, consistent with our treatment of the
parameter, a, in equation 12, we also consider the parameter, p, in
equation 13 as an “average” pore size.

By this simplified discussion, we show that the complex impedance
of a differential element of surface within the porous anode depends
very much on the boundary conditions that are assumed in the solution
of the diffusion equations, and these boundary conditions vary with
the hydrodynamic flow pattern within the electrode. We recognize
that the overall impedance of the electrode will derive from a complex
combination of Z ′

a1 elements and Z ′
a2 elements. We do not intend to

establish this complex relationship. Nor do we intend to devise the
distributions in the parameters “a” and “p” and their relationship to
electrolyte hydrodynamics and pore geometry. Instead, we intend to
quantify the voltage losses associated with migration, charge transfer
reaction and diffusion processes. For this purpose, we do not need in-
depth understanding of the complex impedance for these processes,
we only need to know the current-dependent resistances associated
with these processes. These ohmic, charge transfer, and diffusion re-
sistances are derived by extrapolation of the corresponding complex
impedances to the resistance axis of the Nyquist plot. And, these
extrapolations can be made by using low frequency approximations
to the corresponding impedance equations. In the following discus-
sion, it is important to recognize that the parameters that define “low
frequency” for the migration of ions within a porous electrode are
different than the parameters that define “low frequency” for charge
transfer reaction or for finite diffusion of vanadium ions. Therefore,
the complex impedance of a porous electrode can have several low
frequency intercepts at several different resistances. The overall pur-
pose of this discussion is to associate each low frequency intercept
and its corresponding resistance with a specific electrochemical or
physical process and then integrate that resistance with respect to
the steady-state polarization current to obtain a quantitative measure
of the voltage loss (overvoltage) attributed to that specific process.
Therefore:

In consideration of equations 1 and 2, in the limit as ω→0,
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Under these circumstances equation 1 reduces to equation 16.
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Equation 16 is the low frequency approximation of equation 1.
In equation 16:
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In consideration of equation 12 in the limit as ω→0:
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Equation 12 reduces to equation 19.
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Equation 19 is the low frequency approximation of equation 12.
In consideration of equation 13 in the limit as ω→0:
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Equation 13 reduces to equation 22.

Z ′
a2 = RT

Fi0Gη

+ RT Mη

F2[V +2]b DR Gη

(
p

6
− j

2DR

pω

)

+ RT Nη

F2[V +3]b DO Gη

(
p

6
− j

2DO

pω

)
[22]

Equation 22 is the low frequency approximation of equation 13.
Equations 19 and 22 are further simplified with the following

definitions:

Rct = RT

Fi0Gη

= charge transfer resistance [23]
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Equation 19 reduces to equation 25:

Z ′
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Equation 25 is the low frequency approximation to equation 12.
And equation 22 reduces to equation 26:
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Equation 26 is the low frequency approximation to equation 13.
In equation 26:
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By comparing equations 25 and 26 we notice a very important
difference in the low frequency impedance behavior of surface area
elements, Z ′

a1, which are controlled by finite diffusion to a Nernstian
layer (non-blocking boundary condition) compared to area elements,
Z ′

a2, which are controlled by finite diffusion within the walls of the
pores (blocking boundary condition). Specifically, at low frequency,
Z ′

a1 is represented as a charge transfer resistance, Rct , in series with
a finite diffusion resistance, R f d1 = aW . On the other hand, Z ′

a2, is
represented by the same charge transfer resistance in series with a finite
diffusion resistance, R f d2 = p

6 W , and finite diffusion capacitance,
C f d2. We specifically note that the finite diffusion resistances for
each surface area element only differ by the scale factors that are
proportional to the average Nernstian diffusion layer thickness and
average pore size respectively.
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This simple model relies on one-dimensional solutions to Fick’s
first and second laws of diffusion for non-blocking (Nernstian) and
blocking boundary conditions. We have not considered geometric
shape and form and the distribution of these geometric parameters
in the definition of the complex impedance of differential surface
elements within the porous electrode.

When specific geometric shape and form are considered for dif-
ferential surface elements and to describe the boundary conditions for
finite diffusion to these elements29,30 then a variety of different shapes
yield complex impedance similar to equation 25 for non-blocking
boundary conditions and similar to equation 26 for blocking con-
ditions when extrapolated to low frequency. Except that the finite
diffusion resistances and finite diffusion capacitances are scaled by
different geometric parameters. For both boundary conditions, the
charge transfer resistance does not depend on geometric shape and
form and it only scales inversely with the total surface area. There-
fore, we define the effective impedance of a differential element of
surface by equation 28.
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With corresponding low frequency approximation shown in equa-
tion 29.

Z ′
a = Rct + a

f
W [29]

Equation 28 is identical to equation 12 except that we have in-
cluded the scale factor, f, in the denominator of the finite diffusion
terms to account for geometric shape and form and their distributions
within the electrode. We also note that at low frequencies (defined by
equation 20), the impedance of Z ′

a2 elements contribute negligibly to
the total impedance when added in parallel with the Z ′

a1 elements.
In other words, only that fraction of the electrode surface which is
controlled by finite diffusion to a Nernstian layer contributes to the
finite diffusion resistance of the electrode. In this sense, the factor,
f, also accounts for the partitioning of the total surface area into Z ′

a1
and Z ′

a2 elements. Strictly speaking, this rational for accommodating
the complex distribution of the parameters a and p, and the effects of
geometric shape and form, into a single scale factor is only justified
at low frequency. Nevertheless, we have incorporated the factor,f, in
the generalized impedance equation 28 and apply it over the entire
frequency range of the complex impedance measurement.

In order to model the VRFB anode, we numerically solve equa-
tions 1, 2, 3 and 28 simultaneously using “a” and “f” as adjustable
parameters to obtain the ohmic resistance, Rh f , (equation 17), the
charge transfer resistance, Rct (equation 29), and the finite diffusion
resistance, a

f W , (equation 29) at the appropriate intercepts on the re-
sistance axis of the Nyquist plots of the complex impedance of the
VRFB anode.

Experimental results.— Figure 1A shows the measured Nyquist
impedance spectra at open circuit for a single-layer V+2/V+3 anode
in a symmetric redox flow cell at 30◦C. In order to make stable
complex impedance measurements to low frequency (1 mHz) a gravity
siphon was used to control the electrolyte flow rate at 1.5 mL/min.
(When a peristaltic pump is used, the flow pulse created by the pump,
causes a low frequency fluctuation (disturbance) in the diffusion layer
which compromises the impedance measurement at low frequency.)
Figure 1A also shows the complex impedance spectra computed using
equations 1, 2 and 3 when Z ′

a is defined by equation 28. The measured
and computed resistance and reactance are also plotted as a function
of frequency in Figure 1B. The parameters that were used to obtain
this fit are shown in Appendix II. The close agreement between the

Figure 1. (A) Measured complex impedance spectrum of a V+2/V+3 single-
layer anode, at 30◦C and flow rate of 1.5 mL/min, and complex impedance
spectrum computed using equations 1, 2, 3 and 28. (B) Frequency dispersion
of the resistance and reactance components of the impedance vectors in (A).
Parameters used for the mathematical fit are shown in Appendix II.

measured impedance and the model allow us to extrapolate the ohmic
resistance at the high frequency intercept, and the charge transfer
resistance and finite diffusion resistance from the appropriate low
frequency intercepts described above.

The intercept at high frequency is the resistance of all ohmic pro-
cesses in the cell. This includes the electronic and ionic resistance
within the electrode (defined in equation 17) and the resistance result-
ing from charge migration through the Nafion membrane separator.
The semicircle at frequencies above 0.1 Hz defines the impedance
of the charge transfer process at the electrode surface which can be
represented by a charge transfer resistance in parallel with a double-
layer capacitance (represented as a constant phase element).23 The
impedance between 0.1 Hz to 1 mHz is defined by the Nernstian finite
diffusion process within the porous electrode and permits the mea-
surement of a finite diffusion resistance at the low frequency intercept
with the resistance axis.

Selected complex impedance spectra at various anodic polariza-
tions versus the reference electrode are shown in Figure 2. The ohmic
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Figure 2. Selected electrochemical impedance spectra at 20 mV, 60 mV 100
mV and 140 mV anodic polarizations. Measurements were conducted at 30◦C
and flow rate of 1.5 mL/min on a single layer electrode.
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Figure 3. Overvoltages associated with the ohmic, charge transfer and finite
diffusion processes in the V+2/V+3 electrode under anodic polarization at
30◦C and flow rate of 1.5 mL/min. Each overvoltage is obtained by integration
(with respect to current density) of the corresponding ohmic resistance, charge
transfer resistance and finite diffusion resistance defined in Figure 1A. Note:
the sum of the ohmic + charge transfer + finite diffusion overvoltages is equal
to the total applied overvoltage (dashed line).

resistance, charge transfer resistance and finite diffusion resistance
are easily resolved from each spectrum respectively. The correspond-
ing overvoltage associated with each resistance is then obtained by
integrating each resistance with respect to the measured steady state
current density as shown in Figure 3. The summation of the compo-
nent overvoltages obtained from the integration of these resistances
matches perfectly with the total measured overvoltage also shown in
Figure 3. This plot confirms that the impedance spectra completely
define and resolve all of the rate-limiting processes in the cell and
that no other processes contribute to the voltage loss in the cell. How-
ever, complex impedance measurements to low frequency are very
time consuming, and the long duration of the experiments result in a
substantial decrease in the [V+2]/[V+3] ratio (as described in the ex-
perimental section), and a corresponding change in the charge transfer
resistance and finite diffusion resistance.

Therefore, in order to avoid time consuming impedance measure-
ments to very low frequencies, we hereafter establish the diffusion
overvoltage by measuring the total applied overvoltage and subtracting
the impedance resolved ohmic overvoltage and impedance resolved
charge transfer overvoltage. This process takes about four minutes and
does not result in a change in the [V+2]/[V+3] ratio. This procedure
also allows us to use a peristaltic pump and perform experiments a
higher electrolyte flow rates.

The charge transfer overvoltage with associated double layer ca-
pacitance, ohmic overvoltage and finite diffusion overvoltage for a
single layer electrode (400 μm) at two different flow rates (8 mL/min
and 40 mL/min) are shown in Figure 4. The working electrode was
polarized both cathodically and anodically showing the behavior of a
VRFB anode during charge and discharge, respectively.
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Figure 4. (A) charge transfer overvoltage (B) double-layer capacitance (C) ohmic overvoltage and (D) finite diffusion overvoltage in a single-layer electrode as a
function of current density.
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Figure 5. (A) charge transfer overvoltage (B) double-layer capacitance (C) ohmic overvoltage and (D) finite diffusion overvoltage in a 3-layers electrode electrode
as a function of current density. Data for a single layer electrode are included for comparison.

It is clearly shown in Figure 4 that the charge transfer (Figure 4A)
and ohmic overvoltages (Figure 4C) are invariant as flow rate changes;
whereas the diffusion overvoltage (Figure 4D) is significantly reduced
as flow rate increases. The double-layer capacitance shown in Figure
4B suggests that the surface area for the charge transfer was not
strongly affected by the flow rate. In addition, the charge transfer
processes contributes the largest portion of the total voltage loss within
this current range.

Figure 5 shows results obtained under identical testing condi-
tions as Figure 4, except the electrodes were stacked with 3 layers
of 10AA (1200 μm total thickness).The maximum current density
during charge and discharge was more than double compared to the
single-layer electrode setup, indicating the overall performance was
significantly enhanced. The double-layer capacitance (Figure 5B) in-
creased by a factor of 3 compared to that for single-layer electrode
suggesting the electrochemical surface area scaled proportionally with
the electrode thickness. Figure 5A shows the charge transfer overvolt-
age was significantly reduced due to the increased surface area and
was unaffected by flow rate. Figure 5D shows the diffusion overvolt-
age was also reduced significantly with the increased surface area
and, as expected, was affected by the flow rate. Figure 5C shows a
decrease in ohmic overvoltage for the three-layer electrode. This is
counterintuitive. We surmise (without further evidence) that the mem-
brane and electrodes were reduced in thickness by higher compression
in this cell configuration leading to the reduced resistance. Overall,

the charge transfer process still exhibits the largest contribution to the
overall voltage loss.

A Tafel plot can be constructed using the impedance-resolved
charge transfer overvoltage as shown in Figure 6. For a single elec-

Figure 6. Tafel plots of the impedance resolved charge transfer overvoltages
for single-layer and 3-layer electrodes at 30◦C and flow rates of 8 mL/min and
40 mL/min.
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Table I. Summary of the kinetic parameters including geometric exchange current density io, Tafel slopes and corresponding transfer coefficients
extracted from Figure 6.

Electrode thickness (μm) 400 1200

Flow rate (ml/min) 8 40 8 40
Geometric io (mA/cm2) 4.4 5.0 25.0 21.8

charge discharge charge discharge charge discharge charge discharge
Tafel slope (mV/decade) 125.4 136.7 117.0 134.6 126.3 143.3 114.7 125.4

Transfer coefficient 0.48 0.44 0.51 0.45 0.48 0.42 0.52 0.48

tron, outersphere electron transfer we expect symmetric redox ki-
netics and we expect the transfer coefficients to be independent of
electrolyte flow rate and electrode thickness. In Table I, we report 4
measurements for each coefficient with α = 0.45 ± 0.02 and β =
0.50 ± 0.02. Previous studies have reported α = 0.29, β = 0.30;25 and
α = 0.31, β = 0.2631 respectively. By comparison with this earlier
work, our impedance resolved measurements of these transfer coef-
ficients appears more appropriate and representative of the electrode
kinetics.

Conclusions

We have demonstrated a technique to quantify the in-situ ohmic,
charge transfer and diffusion overvoltages at the negative electrode
of the all-vanadium redox flow battery during charge and discharge.
Voltage loss from each process was probed as the electrode thickness
(400 μm and 1200 μm) and flow rate (8 mL/min and 40 mL/min)
varied. Charge transfer and diffusion overvoltage both decreased as
the electrode thickness increased implying electrode surface area is
a crucial factor affecting the battery performance. However, only
the diffusion overvoltage decreased as the flow rate was increased.
Tafel plots constructed using impedance resolved charge transfer
overvoltage allowed us to investigate in-situ kinetics in more de-
tail. Tafel slopes and corresponding charge transfer coefficients were
observed close to ideal values expected for a one-step one-electron
process at the negative electrode of the all-vanadium redox flow
battery.
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Appendix I

List of Symbols

A geometric area of the porous electrode
At total internal surface area of the electrode
a Nernstian diffusion layer thickness
b thickness of the porous electrode

Cdl area specific double layer capacitance
C f d2 Area specific finite diffusion capacitance

DO Diffusion coefficient of oxidized species (V+3)
DR Diffusion coefficient of reduced species (V+2)

F Faraday’s constant
f scale factor

io exchange current density
is Laplace transform of the current
p pore size
P Power factor for the constant phase element
R gas constant

Rct charge transfer resistance
R f d1 finite diffusion resistance
Rh f ohmic resistance

s Laplace transform variable s = σ + jω
T absolute temperature

[V+2]b concentration of V+2 in the bulk electrolyte
[V+3]b concentration of V+3 in the bulk electrolyte
[V+2]o surface concentration of V+2

[V+3]o surface concentration of V+3

Za complex impedance of a differential unit element of surface area within the
electrode

Z ′
a complex impedance of the charge transfer reaction

Z ′
a1 complex impedance of the charge transfer reaction limited by finite diffusion

to a Nernstian layer (non-blocking boundary condition).
Z ′

a2 complex impedance of the charge transfer reaction limited by finite diffusion
within the pore walls (blocking boundary conditions)

Zp complex impedance of the porous electrode
α anodic transfer coefficient
β cathodic transfer coefficient
η overvoltage

ηs Laplace transforms of the overvoltage
σ neperian frequency

ρ1 specific ionic resistance within the electrode
ρ2 specific electronic resistance of the electrode
ω radian frequency

Appendix II

Parameters used to fit equations 1, 2, 3 and 28 to the data shown
in Figure 1

A 5 cm2 Direct measurement
At 150 cm2 Calculated from total measured

capacitance At = CT/Cdl

a 1.45 × 10−2 cm Fitting parameter
b 4 × 10−2 cm Direct measurement
Cdl 2 × 10−5 F/cm2 Typical double-layer capacitance
P 0.91 Direct measurement
DO 7 × 10−6 cm2/sec Aqueous diffusion coefficient for

V+3

DR 7 × 10−6 cm2/sec Aqueous diffusion coefficient for
V+2

f 0.068 Fitting parameter
io 1.08 × 10−5 A/cm2 Obtained from Tafel plot (not

shown)
T 303.15 K Direct measurement
[V+2]b 1 × 10−5 mole/cm3 Calculated using the Nernst

equation and measured OCV
[V+3]b 7.9 × 10−4 mole/cm3 Calculated using the Nernst

equation and measured OCV
ρ1 0.86 Ohm · cm Electrolyte specific resistivity

times the electrode porosity
ρ2 0.012 Ohm · cm Electrode specification, direct

measurement
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